Statistical Methods in Hydrology

Prof. Belize Lane belize.lane@usu.edu
CEE 6400 Fall 2020

Why statistics??

- Reduce \& summarize observed data
- Present information in precise and meaningful form
- Determine underlying characteristics of observed phenomena
- Make predictions concerning future behavior

Why statistics??

Hydrologic processes:
Predictable (deterministic) + Random (stochastic)
\downarrow
Probability theory \& statistics

Hydrologic data often exhibit...

1. A lower bound of zero
2. Presence of 'outliers'
3. Positive skewness. Skewness can be expected when outlying values occur in only one direction. (eg log-normal distribution)
4. Non-normal distribution of data. Data may be reported only as below or above some threshold (eg annual flood stage records)
5. Seasonal patterns. Values tend to be higher or lower in certain seasons.
6. Autocorrelation. Consecutive observations are highly correlated (high follow high, or low follow low values)
7. Dependence on other uncontrolled variables (eg precipitation, hydraulic conductivity)

Concepts to Understand

- Random variable
- PDF and CDF
- Expected value
- Parametric v. non-parametric
- Quantiles
- Method of Moments
- Flow exceedance
- Frequency/ return period
- Confidence intervals

Summarizing time-series data

- Time series plots
- Histogram/ frequency distribution
- Box plots
- Flow duration curves (FDC)

Summarizing time-series data Time series plot

-Plot variable versus time (bar/line/points)
Example: Daily discharge, monthly streamflow

Summarizing time-series data
 Histogram

- Bar plots of the number n_{i} or fraction $\left(n_{i} / N\right)$ of data falling into equal width intervals of data values ("bins")

(a) Annual precipitation.

(b) Frequency histogram.

Summarizing time-series data Boxplots

Summarizing time-series data Flow Duration Curve (FDC)

Plot of the percent of time that flow exceeds some specified value.

Step 1: Sort (rank) average daily discharges for period of record from largest to smallest for a total of n values.

Step 2: Assign each discharge value a rank (i), starting with 1 for the largest daily discharge value.

Step 3: Calculate the exceedence probability (P) as follows:
$P=\boldsymbol{i} /(n+1)$
$P=$ the probability that a given flow will be equaled or exceeded (\% of time)
$\mathrm{i}=$ ranked position
$\mathrm{n}=$ number of events in period of record

Summarizing time-series data Flow Duration Curve (FDC)

Date	Q(cfs)	Rank (i)	Exc. Probability (P)	Return period (T)
$7 / 2 / 1905$	20100	1	0.0001	7306
$7 / 2 / 1905$	18700	2	0.0003	3653
$7 / 2 / 1905$	17300	3	0.0004	2435
$6 / 20 / 1905$	15100	4	0.0005	1827
$7 / 2 / 1905$	15100	5	0.0007	1461
$6 / 20 / 1905$	15000	6	0.0008	1218
$6 / 15 / 1905$	11700	7	0.0010	1044
$7 / 2 / 1905$	11400	8	0.0011	913
$6 / 23 / 1905$	10800	9	0.0012	812
$6 / 23 / 1905$	10700	10	0.0014	731
$6 / 15 / 1905$	10500	11	0.0015	664
$6 / 23 / 1905$	10400	12	0.0016	609
$6 / 15 / 1905$	10100	13	0.0018	562
$7 / 3 / 1905$	10100	14	0.0019	522
$7 / 3 / 1905$	9970	15	0.0021	487
$6 / 26 / 1905$	9940	16	0.0022	457
$6 / 23 / 1905$	9770	17	0.0023	430
$6 / 15 / 1905$	9650	18	0.0025	406
$6 / 15 / 1905$	9600	19	0.0026	385
$6 / 23 / 1905$	9600	20	0.0027	365
$6 / 26 / 1905$	9480	21	0.0029	348
$7 / 2 / 1905$	9380	22	0.0030	332
$6 / 15 / 1905$	9300	23	0.0031	318
$6 / 26 / 1905$	9130	24	0.0033	304

$P=100 *[i /(n+1)]$
$T=1 / P$

Summarizing time-series data Flow Duration Curve (FDC)

The relationship between the magnitude and frequency of a hydrologic variable for a particular basin / year

What percentage of time does daily flow exceed a given value?

Parametric vs Non-Parametric

Nonparametric statistics (NP) are based on the ranking of the data rather than the data values themselves. This fact has many desirable properties in hydrologic data analysis:
-Fewer assumptions about the data distribution

- Easier to apply
-Robust to the presence of outliers

Figure 1.3a The mean (triangle) as balance point of a data set.

Figure 1.3b Shift of the mean downward after removal of outlier.

Quantiles

The pth quantile of a random variable X divides the PDF so that $\mathrm{p} \%$ of the values lie below and $(100-\mathrm{p}) \%$ of the values lie above.

Figure 3.8
The middle half of the observations in a frequency distribution lie within the interquartile range

Moments of a Distribution

Expected Value $E(X)=\int_{-\infty}^{\infty} x f(x) d x$

Mean

Population
$\mu=\int_{-\infty}^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}$
Sample
$\overline{\mathrm{X}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{X}_{\mathrm{i}}$

$$
\begin{aligned}
\sigma^{2} & =\int_{-\infty}^{\infty}(\mathrm{x}-\mu)^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx} & S^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2} \\
& =\mathrm{E}\left([\mathrm{X}-\mathrm{E}(\mathrm{X})]^{2}\right) & S & =\sqrt{S^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\gamma= & \frac{1}{\sigma^{3}} \int_{-\infty}^{\infty}(\mathrm{x}-\mu)^{3} \mathrm{f}(\mathrm{x}) \mathrm{dx} \quad \hat{\mathrm{C}}=\frac{\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{X}}\right)^{3}}{\mathrm{~S}^{3} \quad \text { Lane }} \\
& =\mathrm{E}\left([\mathrm{X}-\mathrm{E}(\mathrm{X})]^{3}\right) / \sigma^{3} \quad
\end{aligned}
$$ Lane 2020

Expected Value

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{+\infty} x f_{X}(x) d x \quad E[X]=\sum_{i} x_{i} p_{X}\left(x_{i}\right) \\
& P\left(x_{1}<X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x
\end{aligned}
$$

Measures of location

-Mean (P)

Figure 1.2 Density Function for a Normal Distribution

Measures of spread

-Standard deviation (P)

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}
$$

$$
S=\sqrt{S^{2}}
$$

-CV (P)
$\mathrm{CV}=S / \bar{X}$
-IQR (NP)

Measures of skewness

-Skewness (P)

$$
\mathrm{g}=\frac{n}{(n-1)(n-2)} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{3}
$$

Frequency Analysis

-The probability that X exceeds a given event discharge x_{p} is:

$$
\mathrm{F}_{\mathrm{x}}(\mathrm{x})=\mathrm{P}\left(\mathrm{X} \geq \mathrm{x}_{\mathrm{p}}\right)=\mathrm{p}
$$

- The return period (T) corresponding to this exceedance probability is:

$$
\mathrm{T}=1 / \mathrm{p}
$$

- So, the 100-year return period is an event with an exceedance probability $\mathrm{p}=\mathbf{0 . 0 1}$ or a non-exceedance probability $1-\mathrm{p}=\mathbf{0 . 9 9}$

Frequency Analysis

- Find the probability that $\mathrm{X} \geq \mathrm{x}_{\mathrm{T}}$ at least once in N years

$$
\begin{aligned}
& p=P\left(X \geq x_{T}\right) \\
& P\left(X<x_{T}\right)=(1-p) \\
& P\left(X \geq x_{T} \text { at least once in } N \text { years }\right)=1-P\left(X<x_{T} \text { all } N \text { years }\right)
\end{aligned}
$$

$$
=1-(1-p)^{N}=1-\left(1-\frac{1}{T}\right)^{N}
$$

Frequency Analysis

- Annual maximum discharge for 106 years on the Colorado River

$$
x_{T}=200,000 \mathrm{cfs}
$$

No. of occurrences $=3$
$\mathrm{P}=$
$\mathrm{T}=$

If $X_{T}=100,000 \mathrm{cfs}$
No. of occurrences $=8$
P = 8/106=7.5\%
$\mathrm{T}=106 / 8=13.5 \mathrm{yrs}$
$P(X \geq 100,000$ cfs at least once in the next 5 years $)=1-(1-.075)^{5}=32 \%$

The '100-year flood'

Probability that $\mathrm{X} \geq \mathrm{x}_{\mathrm{T}}$ at least once in 100 years $=1-(1-1 / 100)^{100}=\mathbf{6 3 . 4} \%$

Houston's floodplains aren't based on centuries of data
Federal Emergency Management Agency floodplains by risk level and U.S. Geological Survey streamgage stations by how long records have been collected, for Harris County, Texas

FiveThirtyEight
Assumptions:

Most USGS streamgages haven't been around that long How long 8,132 U.S. Geological Survey streamgages have been collecting data

source: u. . Geological surver
FiveThirtyEight, USGS

- Independent observations
- From same PDF
- Stationarity

Random Variables

- Variables that demonstrate variability that is not sufficiently explained by analytical measures of a physical process
- Hydrologic processes are often random variables (e.g. precipitation, runoff)
- Random variable X is described by a probability distribution, a set of probabilities associated with the values in the random variable's sample space
- Probability statistics provide models to deal with uncerrazibty of random variables so we can still quantify processes

Random Variables

Lane 2020

Probability Distributions

Probability density function (PDF)

$$
P\left(x_{1}<X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x
$$

Cumulative distribution function (CDF)

$$
\begin{aligned}
& F(x)=P(X \leq x)=\int_{-\infty}^{x_{2}} f(x) d x \\
& f(x)=\frac{d F}{d x}
\end{aligned}
$$

Probability Distributions

- Many different distributions and analytical expressions

Probability Distributions Normal Distribution

Central limit theorem - if X is the sum of n independent and identically distributed random variables, with increasing n the distribution of X trends towards normal regardless of the distribution of random variables.

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

μ is the mean and σ is the standard deviation

- Most average variables
- Many error distributions

Lane 2020

Probability Distributions

- Normal family
- Normal (average annual P and Q),
- Log-normal (hydraulic conductivity)
- Generalized extreme value (GEV) family
- Gumbel (annual max streamflow), GEV, and Weibull (7-day min flow)
- Pearson family
- Exponential, Log-Pearson type III (annual max flows)

Characterizing Probability Distributions

Lane 2020

Fitting a probability distribution to data

Fitting a probability distribution to data

Set the sample moments as the estimate for the population parameters

$$
\hat{E}(X)=\bar{x} ; \hat{\operatorname{Var}}(X)=\sigma^{2}
$$

Population	Sample
Mean	$\mathrm{E}(\mathrm{X})=\int_{-\infty}^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}$

Fitting a probability distribution to data

Fitting a probability distribution to data

Quantifying Uncertainty

Quantile - Quantile plots

A graphical
"goodness of fit" test

Quantifying Uncertainty

 Kolmogorov-Smirnov Test- Computes the largest difference between the target CDF $F_{X}(x)$ and the observed CDF, $F^{*}(X)$.
- The test statistic D_{2} is:

$$
\begin{aligned}
D_{2} & =\max _{i=1}^{n}\left[\left|F^{*}\left(X^{(i)}\right)-F_{X}\left(X^{(i)}\right)\right|\right] \\
& =\max _{i=1}^{n}\left[\left|\frac{i}{n}-F_{X}\left(X^{(i)}\right)\right|\right]
\end{aligned}
$$

where $X^{(i)}$ is the i th largest observed value in the random sample of size n.

Quantifying Uncertainty Probability Plot Correlation Coefficient

$$
\begin{equation*}
r=\frac{\sum\left(x_{(i)}-\bar{x}\right)\left(w_{i}-\bar{w}\right)}{\left[\left(\sum\left(x_{(i)}-\bar{x}\right)^{2} \sum\left(w_{i}-\bar{w}\right)^{2}\right)\right]^{0.5}} \tag{7.74}
\end{equation*}
$$

Probability Plot Correlation Coefficient test employs the correlation r between the ordered observations $x_{(i)}$ and the corresponding fitted quantiles $w_{i}=G^{-1}\left(p_{i}\right)$, determined by plotting positions p_{i} for each $x_{(i)}$. Values of r near 1.0 suggest that the observations could have been drawn from the fitted distribution: r measures the linearity of the probability plot providing a quantitative assessment of fit|. If \bar{x} denotes the average value of the observations and \bar{w} denotes the average value of the fitted quantiles, then

Quantifying Uncertainty Normal Distribution

" 95% confidence interval": the true population mean will be contained in these intervals an average of 95% of the time

For a Normal distribution, $\mathrm{P}[\mu-1.96 \sigma \leq$ true mean $\leq \mu+1.96 \sigma]=0.95$

The 95% confidence interval for μ

Z-scores		
α	$(1-\alpha)$	z
.10	.90	1.645
.05	.95	1.96
.01	.99	2.575

Uncertainty in catchment water balance

Estimate average annual ET and error

A very useful resource, updated 2020!

ZZSGS

Chapter 1 Summarizing Univariate Data

- Chapter 2 Graphical Data Analysis
- Chapter 3 Describing Uncertainty
- Chapter 4 Hypothesis Tests
- Chapter 5 Testing Differences Between Two Independent Groups
- Chapter 6 Paired Difference Tests of the Center
- Chapter 7 Comparing Centers of Several Independent Groups
- Chapter 8 Correlation
- Chapter 9 Simple Linear Regression
- Chapter 10 Alternative Methods for Regression
- Chapter 11 Multiple Linear Regression
- Chapter 12 Trend Analysis
- Chapter 13 How Many Observations Do I Need?
- Chapter 14 Discrete Relations
- Chapter 15 Regression for Discrete Responses
- Chapter 16 Presentation Graphics
- References Cited
- Index

Helsel, D.R., Hirsch, R.M., Ryberg, K.R., Archfield, S.A., and Gilroy, E.J., 2020, Statistical methods in water resources: U.S. Geological Survey Techniques and Methods, book 4, chapter A3, 458 p., https://doi.org/10.3133/tm4a3

Concepts to Understand

- Random variable
- PDF and CDF
- Expected value
- Parametric v. non-parametric
- Quantiles
- Method of Moments
- Flow exceedance
- Frequency/ return period
- Confidence intervals

