Statistical Methods in Hydrology

Prof. Belize Lane belize.lane@usu.edu CEE 6400 Fall 2020

Why statistics??

- Reduce & summarize observed data
- Present information in precise and meaningful form
- Determine underlying characteristics of observed phenomena
- Make predictions concerning future behavior

Why statistics??

Hydrologic processes:

Predictable (*deterministic*) + Random (*stochastic*)

Probability theory & statistics

Hydrologic data often exhibit...

1. A lower bound of zero

2. Presence of 'outliers'

- 3. Positive **skewness**. Skewness can be expected when outlying values occur in only one direction. (eg log-normal distribution)
- 4. **Non-normal distribution** of data. Data may be reported only as below or above some threshold (eg annual flood stage records)
- 5. Seasonal patterns. Values tend to be higher or lower in certain seasons.
- 6. **Autocorrelation**. Consecutive observations are highly correlated (high follow high, or low follow low values)
- 7. **Dependence** on other uncontrolled variables (eg precipitation, hydraulic conductivity)

Concepts to Understand

- Random variable
- PDF and CDF
- Expected value
- Parametric v. non-parametric
- Quantiles
- Method of Moments
- Flow exceedance
- Frequency/ return period
- Confidence intervals

Summarizing time-series data

- Time series plots
- Histogram/ frequency distribution
- Box plots
- Flow duration curves (FDC)

Summarizing time-series data *Time series plot*

•Plot variable versus time (bar/line/points)

Example: Daily discharge, monthly streamflow

Summarizing time-series data Histogram

- Bar plots of the number n_i or fraction (n_i/N) of data falling into equal width intervals of data values ("bins")

Summarizing time-series data Boxplots

Summarizing time-series data *Flow Duration Curve (FDC)*

Plot of the percent of time that flow exceeds some specified value.

Step 1: Sort (rank) average daily discharges for period of record from largest to smallest for a total of *n* values.

Step 2: Assign each discharge value a rank (*i*), starting with 1 for the largest daily discharge value.

Step 3: Calculate the exceedence probability (P) as follows:
 P = i / (n + 1)

 $\mathsf{P}=\mathsf{the}$ probability that a given flow will be equaled or exceeded (% of time)

i = ranked position

n = number of events in period of record

Summarizing time-series data *Flow Duration Curve (FDC)*

Date	Q (cfs)	Rank (i)	Exc. Probability (P)	Return period (T)
7/2/1905	20100	1	0.0001	7306
7/2/1905	18700	2	0.0003	3653
7/2/1905	17300	3	0.0004	2435
6/20/1905	15100	4	0.0005	1827
7/2/1905	15100	5	0.0007	1461
6/20/1905	15000	6	0.0008	1218
6/15/1905	11700	7	0.0010	1044
7/2/1905	11400	8	0.0011	913
6/23/1905	10800	9	0.0012	812
6/23/1905	10700	10	0.0014	731
6/15/1905	10500	11	0.0015	664
6/23/1905	10400	12	0.0016	609
6/15/1905	10100	13	0.0018	562
7/3/1905	10100	14	0.0019	522
7/3/1905	9970	15	0.0021	487
6/26/1905	9940	16	0.0022	457
6/23/1905	9770	17	0.0023	430
6/15/1905	9650	18	0.0025	406
6/15/1905	9600	19	0.0026	385
6/23/1905	9600	20	0.0027	365
6/26/1905	9480	21	0.0029	348
7/2/1905	9380	22	0.0030	332
6/15/1905	9300	23	0.0031	318
6/26/1905	9130	24	0.0033	304

P = 100 * [i / (n + 1)]

T=1/P

Summarizing time-series data *Flow Duration Curve (FDC)*

The relationship between the magnitude and frequency of a hydrologic variable for a particular basin / year

What percentage of time does daily flow exceed a given value?

Parametric vs Non-Parametric

Nonparametric statistics (NP) are **based on the ranking of the data rather than the data values themselves.** This fact has many desirable properties in hydrologic data analysis:

•Fewer assumptions about the data distribution

- •Easier to apply
- •Robust to the presence of outliers

Quantiles

The pth quantile of a random variable X divides the PDF so that p% of the values lie below and (100-p)% of the values lie above.

Moments of a Distribution

Expected Value $E(X) = \int_{-\infty}^{\infty} xf(x)dx$

Mean

Variance

$$\sigma^{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$
$$= E([X - E(X)]^{2})$$

Population

 ∞

 $-\infty$

 $\mu = \int x f(x) dx$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(x_{i} - \overline{X} \right)^{2}$$
$$S = \sqrt{S^{2}}$$

Sample

 $\overline{\mathbf{X}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{X}_{i}$

Skewness

$$\gamma = \frac{1}{\sigma^3} \int_{-\infty}^{\infty} (x - \mu)^3 f(x) dx$$

= E([X - E(X)]^3) / \sigma^3
$$\hat{\gamma} = \frac{\frac{1}{N} \sum_{i=1}^{N} (X_i - \overline{X})^3}{S^3}$$
Lane 2020

Expected Value

Measures of location

Figure 1.1 Density Function for a Lognormal Distribution

Measures of spread

Measures of skewness

•Skewness (P)

$$g = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} (x_i - \overline{X})^3$$

Frequency Analysis

- The probability that X exceeds a given event discharge x_p is: $F_x(x) = P(X \ge x_p) = p$
- The **return period (T)** corresponding to this exceedance probability is:

T = 1/p

• So, the 100-year return period is an event with an exceedance probability p = 0.01 or a non-exceedance probability 1 - p = 0.99

Frequency Analysis

 Find the probability that X ≥ x_T at least once in N years

$$p = P(X \ge x_T)$$

$$P(X < x_T) = (1 - p)$$

$$P(X \ge x_T \text{ at least once in } N \text{ years}) = 1 - P(X < x_T \text{ all } N \text{ years})$$

$$= 1 - (1 - p)^N = 1 - \left(1 - \frac{1}{T}\right)^N$$

Frequency Analysis

• Annual maximum discharge for 106 years on the Colorado River

P(X ≥ 100,000 cfs *at least once* in the next 5 years) = 1- $(1-.075)^5$ = 32%

Lane 2020

 $x_{T} = 200,000 \text{ cfs}$

The '100-year flood'

Probability that X \ge x_T *at least* once in 100 years =1-(1-1/100)¹⁰⁰ = **63.4%**

Houston's floodplains aren't based on centuries of data

Most USGS streamgages haven't been around that long How long 8,132 U.S. Geological Survey streamgages have been collecting data

Assumptions:

FiveThirtyEight, USGS

- Independent observations
- From same PDF
- Stationarity

Random Variables

- Variables that demonstrate variability that is *not sufficiently explained* by analytical measures of a physical process
- Hydrologic processes are often random variables (e.g. precipitation, runoff)
- Random variable *X* is described by a **probability distribution**, a set of probabilities associated with the values in the random variable's sample space
- Probability statistics provide **models** to deal with uncertainty of random variables so we can still **quantify processes**

Random Variables

UtahStateUniversity

Probability Distributions

Probability Distributions

• Many different distributions and analytical expressions

Probability Distributions Normal Distribution

Central limit theorem – if X is the <u>sum</u> of *n* independent and identically distributed random variables, with increasing *n* the distribution of X trends towards normal <u>regardless</u> of the distribution of random variables.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

 μ is the mean and σ is the standard deviation

- Most *average* variables
- Many error distributions

Probability Distributions

- Normal family
 - Normal (average annual P and Q),
 - Log-normal (hydraulic conductivity)
- Generalized extreme value (GEV) family
 - Gumbel (annual max streamflow), GEV, and Weibull (7-day min flow)
- Pearson family
 - Exponential, Log-Pearson type III (annual max flows)

Characterizing Probability Distributions

Set the **sample** moments as the estimate for the **population** parameters

$$\hat{E}(X) = \overline{x}; \hat{V}ar(X) = \sigma^2$$

Quantifying Uncertainty

Quantile - Quantile plots

A graphical "goodness of fit" test

Quantifying Uncertainty Kolmogorov-Smirnov Test

- Computes the largest difference between the target CDF $F_X(x)$ and the observed CDF, $F^*(X)$.
- The test statistic D_2 is:

$$D_{2} = \max_{i=1}^{n} \left[F^{*}(X^{(i)}) - F_{X}(X^{(i)}) \right]$$
$$= \max_{i=1}^{n} \left[\left| \frac{i}{n} - F_{X}(X^{(i)}) \right| \right]$$

where $X^{(i)}$ is the *i*th largest observed value in the random sample of size *n*.

Quantifying Uncertainty Probability Plot Correlation Coefficient

$$r = \frac{\sum (x_{(i)} - \overline{x}) (w_i - \overline{w})}{\left[\left(\sum (x_{(i)} - \overline{x})^2 \sum (w_i - \overline{w})^2 \right) \right]^{0.5}}$$
(7.74)

Probability Plot Correlation Coefficient test employs the correlation *r* between the ordered observations $x_{(i)}$ and the corresponding fitted quantiles $w_i = G^{-1}(p_i)$, determined by plotting positions p_i for each $x_{(i)}$. Values of *r* near 1.0 suggest that the observations could have been drawn from the fitted distribution: *r* measures the linearity of the probability plot providing a quantitative assessment of fit. If \overline{x} denotes the average value of the observations and \overline{w} denotes the average value of the fitted quantiles, then

Quantifying Uncertainty Normal Distribution

"95% confidence interval": the true population mean will be contained in these intervals an average of 95% of the time

For a Normal distribution, $P[\mu - 1.96\sigma \le true \ mean \le \mu + 1.96\sigma] = 0.95$

The 95% confidence interval for μ

Z-scores

α	(1-a)	z
.10	.90	1.645
.05	.95	1.96
.01	.99	2.575

Uncertainty in catchment water balance

Estimate average annual ET and error

Tarboton, 2003

A very useful resource, updated 2020!

- Chapter 1 Summarizing Univariate Data
- Chapter 2 Graphical Data Analysis
- Chapter 3 Describing Uncertainty
- Chapter 4 Hypothesis Tests
- Chapter 5 Testing Differences Between Two Independent Groups
- Chapter 6 Paired Difference Tests of the Center
- Chapter 7 Comparing Centers of Several Independent Groups
- Chapter 8 Correlation
- Chapter 9 Simple Linear Regression
- Chapter 10 Alternative Methods for Regression
- Chapter 11 Multiple Linear Regression
- Chapter 12 Trend Analysis
- Chapter 13 How Many Observations Do I Need?
- Chapter 14 Discrete Relations
- Chapter 15 Regression for Discrete Responses
- Chapter 16 Presentation Graphics
- References Cited
- Index

Helsel, D.R., Hirsch, R.M., Ryberg, K.R., Archfield, S.A., and Gilroy, E.J., 2020, Statistical methods in water resources: U.S. Geological Survey Techniques and Methods, book 4, chapter A3, 458 p.,

https://doi.org/10.3133/tm4a3

Concepts to Understand

- Random variable
- PDF and CDF
- Expected value
- Parametric v. non-parametric
- Quantiles
- Method of Moments
- Flow exceedance
- Frequency/ return period
- Confidence intervals

